Baker Hughes >

Reti di distribuzione e stoccaggio di H2

Francesco Bini -H2 Growth Area

Copyright 2022 Baker Hughes Company. All rights reserved. The information contained in this document is company confidential and proprietary property of Baker Hughes and its affiliates. It is to be used only for the benefit of Baker Hughes and may not be distributed, transmitted, reproduced, altered, or used for any purpose without the express written consent of Baker Hughes.

We were one of the first in the oil and gas industry to make a net-zero carbon commitment

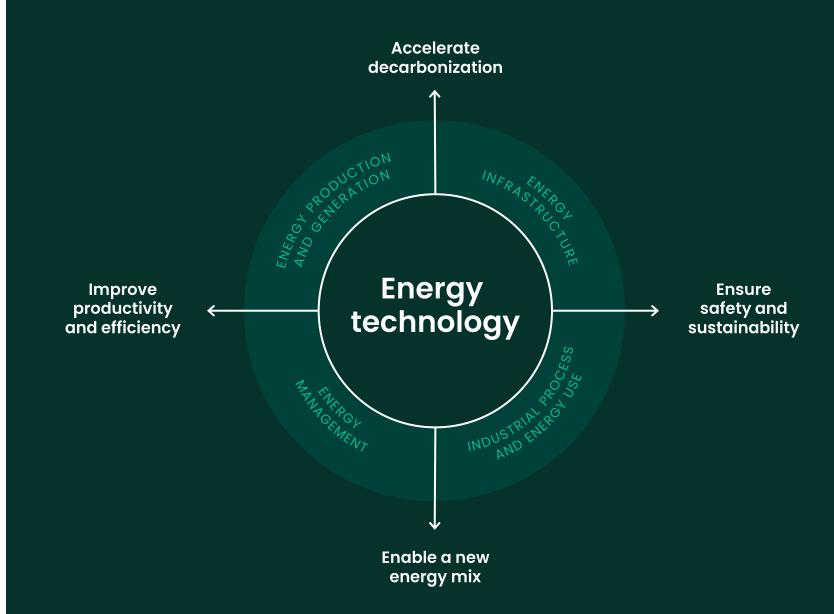
And we hope we're not the last.

Baker Hughes is committed to reducing our emissions by 50% by 2030 and net-zero by 2050 15%

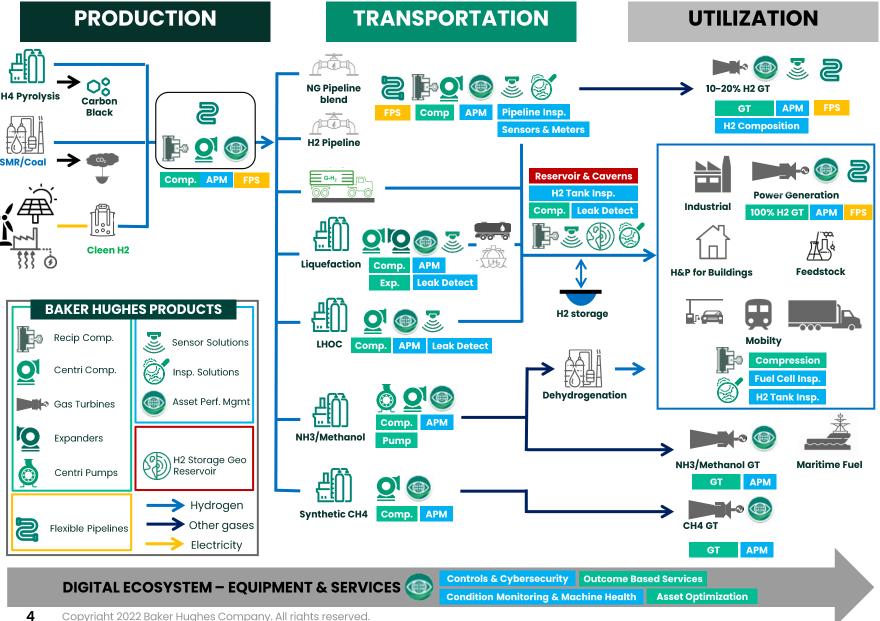
reduction in scope 1 and scope 2 emissions year-over-year versus 2019 baseline

22%

of our electricity comes from renewables and zero-carbon sources


850+

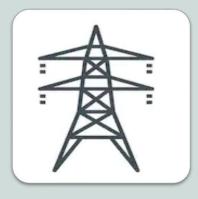
global facility energy audits and weekend energy walk-throughs completed in the last two years



Energy technology is the heart of the energy ecosystem, and it has never been more vital.

Our capabilities are critical to the future of energy.

Baker Hughes portfolio across the Hydrogen value chain


- Almost 60 years of experience working with hydrogen
- Critical applications across production, transportation, and storage
- Ability to work with intermittent energy sources to provide grid support
- Digital Portfolio of solutions across the whole H2 value chain

Baker Hughes \geqslant

H2 Transportation Overview

How to transport Hydrogen?

Electrical grid

No shipping or storage needed

Flexibility for H2 production

Capex

Losses in electricity H2 prod in site

Natural Gas

Low impact on existing infrastructures

High Energy content

CO2 emissions

Variable pricing

Ammonia

Easy to transport

Well established process

High H2 density

Conversion Cost

Impact on downstream infrastructure

LOHC

LH2

Minimal processing requirements

Transportation model similar to LNG

High energy costs

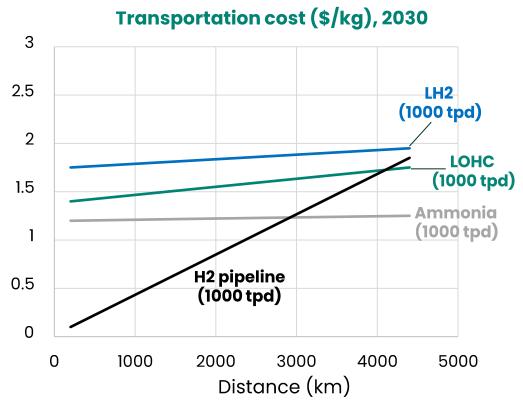
Transportation for LH2 not mature

Safety risks due to leakages

GH2

Minimal processing requirements

Well established technology


Material requirement (H2 embrittlement)

Very low density an poor specific volume energy density

CONS

Cost Effectiveness for H2 Transportation

Includes conversion, export terminal, shipping, import terminal and reconversion costs for each carrier system. Storage costs are included in import and export terminal expenses. The pipeline cost assumes construction of a new pipeline

Technology	Description	
H2 Pipeline	Most economical way to transport H2 for distance <3000 km	
Ammonia	Most convenient route and become competitive for land transportation >3000 km	
Liquid H2	Still not competitive vs other form of large H2 transportation. Current max size 30 tpd, need 30x scale up to become competitive	
LOHC	low TRL technology, still to be proven	

European Hydrogen Backbone

31 European gas infrastructure companies to plan a pan-European dedicated H2 transport ... **28000 km** by 2030 ...**53000 km** by 2040

80-143 billion € for the infrastructure

100% full decarbonization

DECEMBER '21: SNAM announced 3 billion euros investment in H2 transport by repurposing 2,700 km of network **from Tunisia to Italy**

Mission

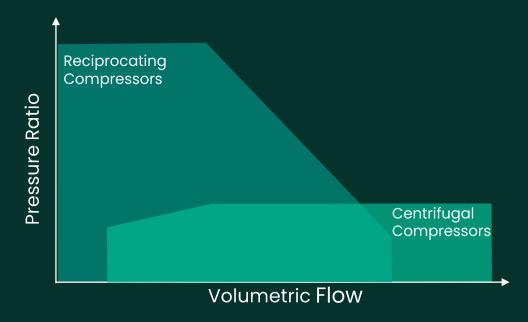
www.gasforclimate2050.eu/ehb/

The EHB initiative aims to accelerate Europe's decarbonisation journey by defining the critical role of hydrogen infrastructure — based on existing and new pipelines — in enabling the development of a competitive, liquid, pan-European renewable and low-carbon hydrogen market.

The initiative seeks to foster market competition, security of supply, security of demand, and cross-border collaboration between European countries and their neighbours.

H2 Transportation Technology

H₂ Compression


Expanding our compression leadership to hydrogen

We are established leaders in compression technology and our **High Pressure Ratio Compressors (HPRC)** provide significant improvements in overall green H₂ plant footprint, reliability, availability and weight.

Main achievements

- Long history of handling applications rich in H2
- First H2 application in 1962, a hydrogen compressor
- 2,250+ compressors installed
- Largest compression portfolio tailored to the hydrogen value chain, for production, transportation, and distribution

Hydrogen services	Technology	Installed Units	Max Flow (NM3/Hr)	Max Power (MW)
+2250	Recips	+2000 (+800 with H2 >95%)	190.000	20
Installed units	Centrifugal	+250	1.200.000	19.4

Impact of hydrogen on centrifugal compressors

Material

Hydrogen Attack

Affect Carbon and low alloy steels, T > 200°C usually not applicable for pipeline CC

Hydrogen Embrittlement (HE)

Affect high-strength steels and titanium alloys, T < 150°C applicable for pipeline CC

Hydrogen dissociates in atoms and penetrates the material → local plasticization and brittle failure

LIMITS ON MAXIMUM YIELD STRENGHT AND HARDNESS

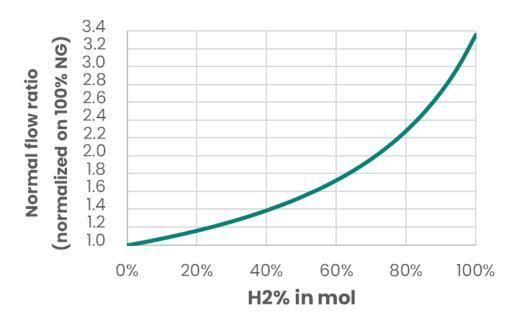
Thermodynamic performances

When Hydrogen content increases..

- Head increases
- Power increases
- Discharge temperature increases



MAIN CHALLENGE → COMPACT SOLUTION


Performances impact - General

Impact on speed and power (at constant Nm3/h)

When the H2 content raises, both operating speed and absorbed power increase as indicated in the graph above

Impact on Nm3/h (at constant gas energy)

At constant gas energy, higher is the H2 content, larger will be the flow, demanding more speed and power

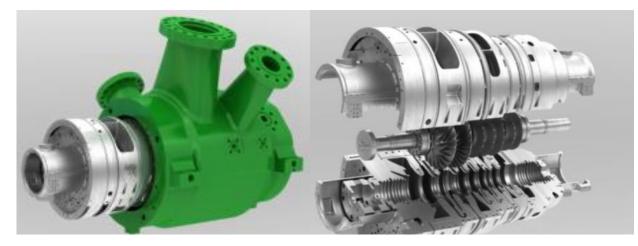
Centrifugal Compressors

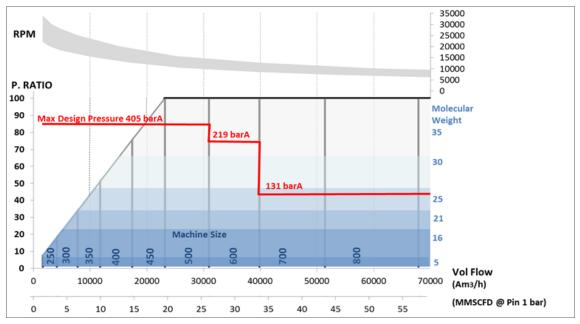
HPRC: High Pressure Ratio Compressor

Increased tip speed

Increase head capability achieved with high speed, high efficiency impellers on a stacked rotor.

Increased rotating speed


Parallel shaft gears to approx. 9X gear ratio and beyond with epicyclic technology.


Compressor design optimization

Optimized inlet and outlet flanges for a 'single body' design

Reduced number of bodies

A significant reduction of stages and up to 3 sections in 1 compressor body resulting in a compact solution.

Case study - Pipeline Compression Station

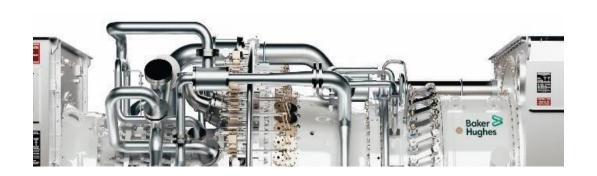
Case study

Flow constant: 2000 MMSCFD,

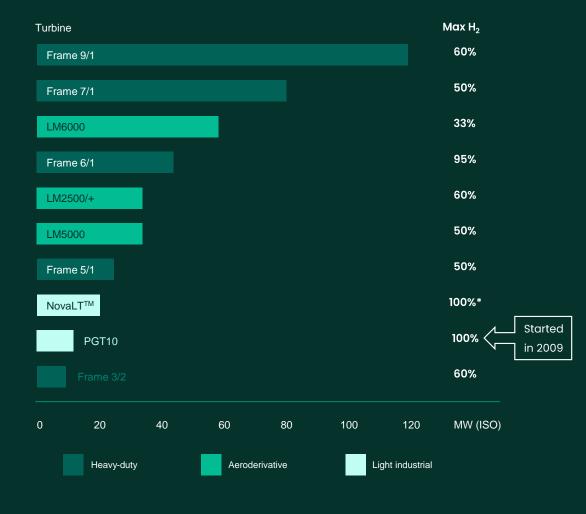
Inlet Pressure: <u>60 bar</u>

Outlet Pressure: 110 bar

Hydrogen Blend [% mol]	0%	10%	20%	30%	40%	50%	100%
Number of impeller require			equired	d			
Standard PCL impellers U2 = 250 m/s	3	4	4	5	5	6	28
High head impellers U2 = 300 m/s	2	3	3	3	4	4	18
HPRC impellers U2=450 m/s	1	2	2	2	2	2	9


HPRC solution is a great option when H2 content is predominant

H₂ fueled Gas Turbines


Proven and available today – **up to 100% hydrogen turbine**Fuel gas blends with 10% to 100% hydrogen. Our turbines are ready for integration and adaptation into existing gas infrastructure, specifically designed to facilitate deployment.

Main achievements

- •70+ units installed highlighting experience with frame and aeroderivative designs burning H2 rich fuel
- •Complete turbine portfolio for current and future H2 Market needs. Full scale PGT10 demonstrative plant (100% H2)
- •NovaLT[™] turbine technology*, the H2 Flagship, dedicated LT combustion test @100% H2, able to start and run @ 100% H2

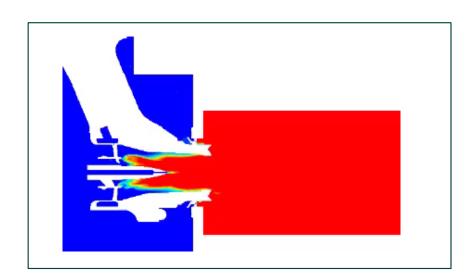
WIDE RANGE OF EXPERIENCE IN BURNING HYDROGEN

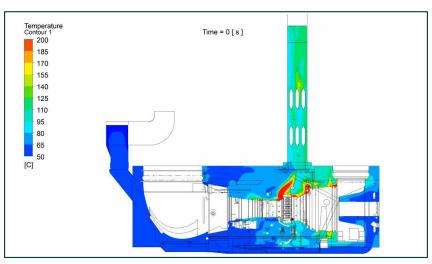
*Demonstrated on a combustion test bench

Challenges of Hydrogen Utilization in Gas Turbines

Engine and package modifications are needed for hydrogen fuel

Combustion

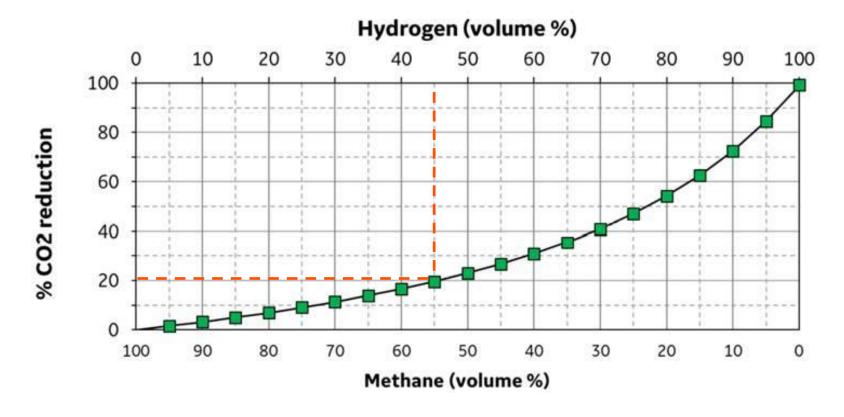

- High flame speeds
- Wide flammability limits
- High flame temperatures
- Flashback
- Combustion dynamics


Delivery & Package

- Storage
- Sealing
- Material compatibility
- Equipment validation & ATEX certification

Operation

- Start-up and shut-down procedures
- Fuel system/engine/package purge requirements
- Flame detection
- Gas detection
- Performance/durability (high % H2)



Hydrogen Blends with Natural gas

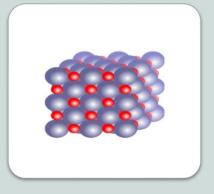
CO₂ Emission Reduction From Gas Turbine at varying blends of hydrogen in fuel gas

High % of Hydrogen blend in Natural gas needed to achieve significant CO2 reduction

Snam and Baker Hughes test world's first hydrogen blend turbine for gas networks

- In July 2020, Baker Hughes and Snam successfully completed testing of the world's first "hybrid" hydrogen turbine designed for a gas network.
- The test paves the way to implement adoption of hydrogen blended with natural gas in Snam's current transmission network infrastructure.

- Powered by blend of up to 10% hydrogen, the NovaLT 12 turbine was designed and manufactured by Baker Hughes in Italy
- NovaLT 12 will be installed at Snam's gas compressor station in Istrana, Italy
- Project represents new milestone for Italian infrastructure as it continues to adapt to transport hydrogen and reduce CO₂ emissions
- Today 70% of Snam's pipelines are already built with "Hydrogen ready" pipes



H2 Storage Overview

How to store Hydrogen?

CGH2

Minimal processing requirements

Well established technology

Material requirement (H2 embrittlement)

Very low density and poor specific volume energy density

Ammonia

Easy to transport

Well established process

High H2 density

Conversion Cost

Impact on downstream infrastructure

Metal Hydrides

Easy to transport

Lesser safety and reliability risks

Challenges with weight of storage

Poor speed of H2

Cavern

Suitable for large scale and long term storage

Minimal losse

ower storage cost for extensive volumes

Geographical availability

Extensive plant/equipment

LH2

Minimal processing requirements

Transportation model similar to LNG

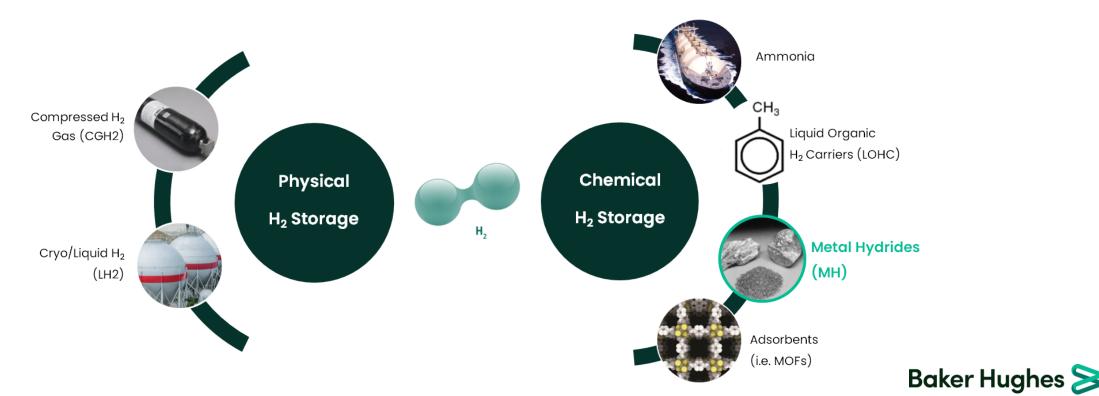
High energy costs

Transportation for LH2 not mature

Safety risks due to leakages

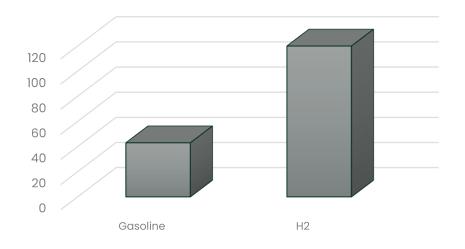
H2 Storage Technology

H₂ Storage


Technology context

Compared to other **fuels**, the Hydrogen molecule possesses:

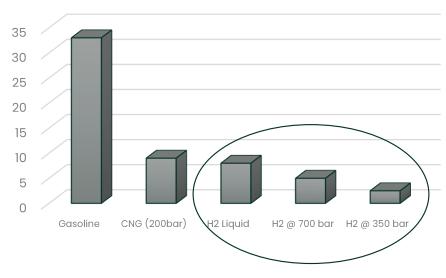
- the highest energy content by weight
- a low energy density by volume


Storing sufficient quantities of hydrogen with convenient footprints is then achieved through **three main strategies**:

- high storage pressure
- low storage temperature
- storing H₂ molecules within different materials

Focusing on H₂ Compression

Mass Energy Density [MJ/kg]



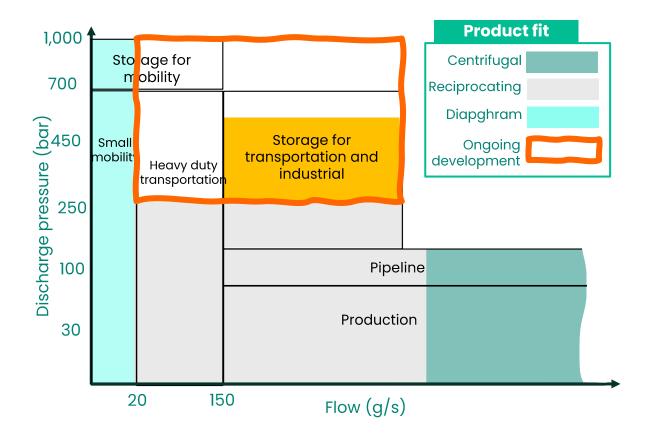
1kg of H₂ embeds ~3x the energy of same mass of Gasoline!

and there is not Carbon inside \rightarrow CO $_2$ free combustion ... but

1kg H₂ @ atm. Press. needs ~3000x volume for 1 kg of Gasoline....

Volume Energy Density [MJ/L]

To have decent energy content in a reasonable volume:


- Liquefaction → Requires compression anyway to mitigate high cost of cryo-conditions (-253°C for H₂ Liquid @ atm. Pressure)
- High-Pressure tanks/storages → Requires compression after production (Electrolyzer output only 1÷30 bar range)

Compression will be of paramount importance in the H₂ Era

Compression for H2 storage

Hydrogen compression

- Diapghram compressor max flow: 300-500 Nm3/h
- Refueling station for trucks and train will require 15x-20x compressors
- Currently no cost-effective technology for large refueling stations
- Ongoing development of new solution to enable
 efficient reliable and sustainable H2 distribution system

Reciprocating compressor for H2 applications

The Nuovo Pignone reciprocating compressors have been designed for the compression of process gases according to the stringent API618 regulations, in particular for the compression of hydrogen for various uses.

Since 1962, our compressors have been installed for hydrocracking, hydrotreating, hydrodesulphurization processes and for all refinery applications that include hydrogen.


We have 60 years of history and 1000 running units with H2 that testify our well proven design, our engineering skills and our technical innovation on reciprocating compressors

1911	First reciprocating compressor
1962	First Hydrogen compressor
1964	First Hypercompressor for LDPE
1966	First compressors for re-injection of associated gas
1976	Highest working pressure, in a Hypercompressor for LDPE: 3,500 bar
2006	Highest installed power for a single LDPE compression unit, 33 MW
2020	One of the largest API 618 compressors20MW in H2 process
2021	Large HG reciprocating compressor on-skid
2022	Development of compressor for HRS with 550 bar discharge pressure

Baker Hughes experience in hydrogen services: over 1000 units

Baker Hughes >